Abstract
Abstract The evaluation of the diurnal cycle of cloud amount (CA) and cloud condensed water path (CWP) as predicted by climate models receives relatively little attention, mostly because of the lack of observational data capturing the diurnal cycle of such quantities. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat-8 satellite is the first instrument able to provide accurate information on diurnal cycles during daylight hours of cloud properties over land and ocean surfaces. This paper evaluates the daylight cycle of CA and CWP as predicted by the Regional Atmospheric Climate Model version 2 (RACMO2), using corresponding SEVIRI retrievals. The study is done for Europe using hourly cloud properties retrievals from SEVIRI during the summer months from May to September 2004. The results of this study show that SEVIRI-retrieved daylight cycles of CA and CWP provide a powerful tool for identifying climate model deficiencies. Over Europe the SEVIRI retrievals of cloud condensed water paths comprise about 80% liquid water and about 20% ice water. The daylight cycles of CA and CWP from SEVIRI show large spatial variations in their mean values and time of daily maximum and daytime-normalized amplitude. In general, RACMO2 overestimates CWP by about 30% and underestimates CA by about 20% as compared to SEVIRI. The largest amplitudes are observed in the Mediterranean and northern Africa. For the greater part of the ocean and coastal areas the time of daily maximum CWP is found during morning, whereas over land this maximum is found after local solar noon. These features are reasonably well captured by RACMO2. In the Mediterranean and continental Europe RACMO2 tends to predict maximum CWP associated with convection to occur about two hours earlier than SEVIRI indicates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.