Abstract

Several β-cyclodextrin (β-CD) derivatives have been synthesized recently to improve the physicochemical properties and inclusion capacities of the parent molecule, however, there is limited information available about their cytotoxic effects. In this study we investigated the cytotoxic and hemolytic properties of various β-CDs in correlation with their cholesterol-solubilizing capacities to expose the mechanism of toxicity. MTT cell viability test, performed on Caco-2 cells showed significant differences between the cytotoxicity of β-CD derivatives. Cell toxicity of methylated-β-CDs was the highest, while ionic derivatives proved to be less toxic than methylated ones. Most of the second generation β-CD derivatives, having both ionic and methyl substituents showed less cytotoxicity than the parent compounds both on Caco-2 cells and human erythrocytes. Inclusion of cholesterol into the ring of randomly methylated-β-CD and heptakis(2,6-di- O-methyl)-β-CD abolished the cell toxicity indicating the role of cholesterol extraction in cytotoxicity. These data demonstrate the correlation between the cytotoxic effect, hemolytic activity and the cholesterol complexation attributes of β-CD derivatives and we propose that cholesterol-solubilizing properties can be a predictive factor for β-CD cell toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.