Abstract
To understand the mechanism of information processing by a biological neural network, computer simulation of a large-scale spiking neural network is an important method. However, because of a high computation cost of the simulation of a large-scale spiking neural network, the simulation requires high performance computing implemented by a supercomputer or a computer cluster. Recently, hardware for parallel computing such as a multi-core CPU and a graphics card with a graphics processing unit (GPU) is built in a gaming computer and a workstation. Thus, parallel computing using this hardware is becoming widespread, allowing us to obtain powerful computing power for simulation of a large-scale spiking neural network. However, it is not clear how much increased performance the parallel computing method using a new GPU yields in the simulation of a large-scale spiking neural network. In this study, we compared computation time between the computing methods with CPUs and GPUs in a simulation of neuronal models. We developed computer programs of neuronal simulations for the computing systems that consist of a gaming graphics card with new architecture (the NVIDIA GTX 1080) and an accelerator board using a GPU (the NVIDIA Tesla K20C). Our results show that the computing systems can perform a simulation of a large number of neurons faster than CPU-based systems. Furthermore, we investigated the accuracy of a simulation using single precision floating point. We show that the simulation results of single precision were accurate enough compared with those of double precision, but chaotic neuronal response calculated by a GPU using single precision is prominently different from that calculated by a CPU using double precision. Furthermore, the difference in chaotic dynamics appeared even if we used double precision of a GPU. In conclusion, the GPU-based computing system exhibits a higher computing performance than the CPU-based system, even if the GPU system includes data transfer from a graphics card to host memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.