Abstract

Laminated timber composed of small-diameter timbers reinforced with a steel bar and fiber-reinforced polymer (FRP) were fabricated to satisfy the seismic design performance level of wooden columns, and their compression strength performance was evaluated. The experimental results showed that the average compression strength of the specimen reinforced with a CFRP (Carbon FRP) bar increased by approximately 7% compared to that of the control. The average compression strengths of the specimens reinforced with a GFRP (Glass FRP) bar and a steel bar increased by 38 and 37% compared to that of the control, respectively. The unreinforced control column specimens showed a diagonal failure tendency due to the fiber slope angle, and the wood part of the reinforced specimens showed a failure mode with suppressed diagonal fracture. The average strength of the column reinforced with a CFRP plate increased by approximately 6%, but the average strength of the column reinforced with a GFRP plate decreased by approximately 5%. A comparison of the measured and predicted compression strengths of the specimens showed that the strength differences of all the specimens except the specimen reinforced with a GFRP plate were good (2 to 10.4%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call