Abstract

The response of the cerebral circulation to exercise has been studied with transcranial Doppler ultrasound (TCD) because this modality provides continuous measurements of blood velocity and is well suited for the exercise environment. The use of TCD as an index of cerebral blood flow, however, requires the assumption that the diameter of the insonated vessel is constant. Here, we examine this assumption for rhythmic handgrip using a spectral index designed to measure trends in vessel flow. Nineteen normal subjects were studied during 5 min of volitional maximum rhythmic right handgrip at 1 Hz. TCD velocities from both middle arteries (left and right), blood pressure, and end-tidal PCO(2) were recorded every 10 s. A spectral weighted sum was also calculated as a flow index (FI). Averages were computed from the last 2 min of handgrip. Relative changes in velocity, FI, and pressure were calculated. The validity of FI was tested by comparing the change in diameter derived from equations relating flow and diameter. Mean blood pressure increased 23.8 +/- 17.8% (SD), and velocity increased 13.3 +/- 9.8% (left) and 9.6 +/- 8.3% (right). Although the mean change in FI was small [2.0 +/- 18. 2% (left) and 4.7 +/- 29.7% (right)], the variation was high: some subjects showed a significant increase in FI and others a significant decrease. Diameter estimates from two equations relating flow and luminal area were not significantly different. Decreases in FI were associated with estimated diameter decreases of 10%. Our data suggest that the cerebral blood flow (CBF) response to rhythmic handgrip is heterogeneous and that middle cerebral artery flow can decrease in some subjects, in agreement with prior studies using the Kety-Schmidt technique. We speculate that the velocity increase is due to sympathetically mediated vasoconstriction rather than a ubiquitous flow increase. Our data suggest that the use of ordinary TCD velocities to interpret the CBF response during exercise may be invalid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.