Abstract
Abstract Herein, we report on the performance of graphene oxide (GOx) and zinc oxide nanoparticles (ZnONPs) on a platinum (Pt) electrode, immobilized with the human T1R2 sweet taste receptor subunit for the detection of rebaudioside A (Reb-A). The characterization studies performed in this work confirmed the thin-layered structure of GOx and the polydispersed nature of ZnONPs. The elucidation of the mass loss observed by TGA demonstrates the stability of GOx. The cyclic voltammetry results for Pt/GOx revealed good catalytic activity over Pt/ZnONPs for adsorption of the T1R2-Reb-A complex. In addition, a series of computational modelling studies were carried out to better understand the surface adsorption phenomena of GOx and ZnONPs to mimic the layer-by-layer electrode modification strategies independently. The strongest interaction energy observed (−573 kcal mol−1) for the direct interaction of ZnONPs onto the Pt electrode surface, demonstrates a stronger adsorption in contrast to the GOx modified Pt electrode (−23 kcal mol−1). However, the overall results for the layered-nanocomposite revealed that the GOx (−256 kcal mol−1) were more strongly adsorbed in contrast to ZnONPs (−231 kcal mol−1) for the detection of the T1R2-ReB-A complex, demonstrating the reliability of our GOx electrode functionalization strategy. The results of this study can potentially be used to improve the design of rapid Reb-A sensors for the food and beverage industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.