Abstract

Long-term cadmium intake can be very dangerous to human health due to its toxic effects. Although people can be contaminated with this element from different sources, contaminated food is probably the most important one. Foods such as vegetables and fruits can become contaminated with cadmium existing in soils, irrigation water, or chemical fertilizers. Some plants produce an excess of cysteine-rich peptides (CRp) when affected by high concentrations of heavy metals such as cadmium, thus indicating the presence of this type of contamination. Among these plants is tamarillo (Solanum betaceum), which is locally known as “tree tomato”. This is a native plant widely consumed in the Ecuadorian Andes because of its abundance, low cost, and high content of vitamin C and fiber. The fact that Solanum betaceum produces CRp upon contamination with heavy metals means that this plant may be able to accumulate heavy metals. If this is the case, the plant can possibly be used as an indicator of metal pollution. The main goals of the present work were to evaluate the possibility of using Solanum betaceum as an indicator of metal contamination in plants and to examine its capability to accumulate metals. Both goals were met by determination of the amounts of CRp produced by Solanum betaceum cells cultivated in vitro in the laboratory under controlled conditions in the presence of different concentrations of cadmium. The CRp determination was carried out by means of electrogeneration of iodine in an iodide solution containing reduced glutathione as a biological thiol model. Solanum betaceum cells were grown in a Murashige and Skoog solution enriched with a 30 g L−1 sugar aqueous solution and 1 mg L−1 2,4-dichlorophenoxyacetic acid. The results of these experiments confirmed the following: (1) CRp production is a function of the amount of cadmium present as a contaminant up to a limiting value after which cell apoptosis occurs; (2) Solanum betaceum accumulates cadmium; (3) the analytical method used is appropriate for CRp determination; and (4) CRp determination is a valid alternative to detect contamination by heavy metals in plants.

Highlights

  • Long-term intake of foods contaminated with Cd, Pb, Hg, and some other heavy metals can result in serious health problems due to their accumulative character and toxicity [1,2]

  • Cadmium is an element that can be present in the water, soil, pesticides, and chemical fertilizers

  • It can be considered as one of the most ubiquitous toxic heavy metals in plants because this element can be absorbed through the roots, accumulated, and stored in the whole plant

Read more

Summary

Introduction

Long-term intake of foods contaminated with Cd, Pb, Hg, and some other heavy metals can result in serious health problems due to their accumulative character and toxicity [1,2]. Cadmium is an element that can be present in the water, soil, pesticides, and chemical fertilizers. It can be considered as one of the most ubiquitous toxic heavy metals in plants because this element can be absorbed through the roots, accumulated, and stored in the whole plant. In the case of edible plants, this metal can be transferred to people through the trophic chain, constituting a health risk. The presence of this contaminant in crops used as sources of food for human beings should be closely monitored [3,4]. The presence of excess heavy metals in a given plant can be detected by measuring the amount of cysteine-rich peptides (CRp), such as phytochelatins and glutathione (GSH), produced by some plants when they are under stress caused by the presence of heavy metals

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.