Abstract

1. The kinetics of decay in the dark of the transmembrane pH difference (delta pH) induced by light in nonphosphorylating chromatophores of Rhodobacter capsulatus were studied using the fluorescent probe 9-aminoacridine, in the presence of 50 mM KCl and 2 microM valinomycin. The transient fluorescence changes induced by acid to base transitions of chromatophore suspensions were used as an empirical calibration [Casadio, R. & Melandri, B. A. (1985) Arch. Biophys. Biochem. 238, 219-228]. The kinetic competence of the probe response was tested by accelerating the delta pH decay with the ionophore nigericin. 2. The time course in the dark of the increase in the internal pH in pre-illuminated chromatophores was analyzed on the basis of a model which assumes a certain number of internal buffers in equilibrium with the free protons and a diffusion-controlled H+ efflux [Whitmarsh, J. (1987) Photosynt. Res. 12, 43-62]. This model was extended to include the effects of the transmembrane electric potential difference on the H+ efflux. 3. The diffusion constant for proton efflux was measured at different values of the internal pH by evaluating the frequency of trains of single-turnover flashes capable of maintaining different delta pH in a steady state. The steady-state equation derived from the model does not include any parameter relative to the internal buffers and allows unequivocal determination of the diffusion constant on the basis of the known H+/e- ratio (equal to two) for the active proton translocation by the bacterial photosynthetic chain. A value for the first-order diffusion constant corresponding to a permeability coefficient, PH = 0.2 micron.s-1, was obtained at an external pH of 8.0; this value was constant for an internal pH ranging over 7.0-4.7. 4. Using the value of the diffusion constant determined experimentally, a satisfactory fitting of the kinetics of delta pH decay in the dark could be obtained when the presence of two internal buffers (with pK values of 3.6 and 6.7, respectively) was assumed. For these calculations, the time course of the transmembrane electric potential difference was evaluated from the electrochromic signal of carotenoids, calibrated with K(+)-induced diffusion potentials. The two internal buffers, suitable for modelling the behaviour of the system, were at concentrations of 250 mM (pK = 3.6) and 24 mM (pK = 6.7) respectively.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call