Abstract

BackgroundThe inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks.ResultsDown-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin pathway yielded switchgrass (Panicum virgatum) that was more susceptible to bioconversion after dilute acid pretreatment. Here we examined the response of these plant lines to milder pretreatment conditions with yeast-based simultaneous saccharification and fermentation and a consolidated bioprocessing approach using Clostridium thermocellum, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Unlike the S. cerevisiae SSF conversions, fermentations of pretreated transgenic switchgrass with C. thermocellum showed an apparent inhibition of fermentation not observed in the wild-type switchgrass. This inhibition can be eliminated by hot water extraction of the pretreated biomass, which resulted in superior conversion yield with transgenic versus wild-type switchgrass for C. thermocellum, exceeding the yeast-based SSF yield. Further fermentation evaluation of the transgenic switchgrass indicated differential inhibition for the Caldicellulosiruptor sp. strains, which could not be rectified by additional processing conditions. Gas chromatography–mass spectrometry (GC-MS) metabolite profiling was used to examine the fermentation broth to elucidate the relative abundance of lignin derived aromatic compounds. The types and abundance of fermentation-derived-lignin constituents varied between C. thermocellum and each of the Caldicellulosiruptor sp. strains.ConclusionsThe down-regulation of the COMT gene improves the bioconversion of switchgrass relative to the wild-type regardless of the pretreatment condition or fermentation microorganism. However, bacterial fermentations demonstrated strain-dependent sensitivity to the COMT transgenic biomass, likely due to additional soluble lignin pathway-derived constituents resulting from the COMT gene disruption. Removal of these inhibitory constituents permitted completion of fermentation by C. thermocellum, but not by the Caldicellulosiruptor sp. strains. The reason for this difference in performance is currently unknown.

Highlights

  • The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass

  • Simultaneous saccharification and fermentation Transgenic (TG) and wild-type (WT) control switchgrass lines were dilute acid (DA) pretreated and washed solids were subjected to simultaneous saccharification and fermentation (SSF)

  • Using three lines of switchgrass down-regulated in the caffeic acid 3-O-methyltransferase (COMT) gene [12], we have shown that a milder pretreatment process does not impact the improved product yield generated by fermentation of the COMT downregulated switchgrass biomass during yeast-based SSF

Read more

Summary

Introduction

The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks. Lignin is a major component of plant cell walls and impedes enzymatic hydrolysis of the cellulose and hemicellulose to fermentable sugars. There is an inverse relationship between lignin content/ composition and plant cell wall enzymatic hydrolysis and fermentation kinetics [5,6]. The evaluation of transgenic lines of alfalfa down-regulated in the lignin pathway has shown increased sugar release from hydrolysis in comparison to the wild-type, and this phenomenon is directly related to the reduction of lignin content [10]. A transgenic switchgrass (Panicum virgatum) with down-regulation of the COMT (caffeic acid 3-O-methyltransferase) gene showed improved susceptibility to bioconversion using yeast-based simultaneous saccharification and fermentation (SSF) and consolidated bioprocessing (CBP) with C. thermocellum [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call