Abstract

The purpose of this study was to determine the suitability of a newly developed Ti-Ta-Sn alloy for use as a metallic biomaterial. The in vitro cell toxicity was determined by testing the corroding metal solutions using cell culture. Besides the cell adhesion rate, cell proliferation and colony formation were tested on the metal plates. Results of the cytotoxicity tests for higher concentrations of the corroding metal solutions (32 ppm and 64 ppm) revealed that the toxicity for U937 macrophages was lowest for the Ti-Ta-Sn alloy, followed by SUS316L and Co-Cr-Mo, with Ni-Ti being the most toxic. The Ti-Ta-Sn solution showed no cytotoxicity, even at a concentration of 64 ppm. The Co-Cr-Mo and Ni-Ti solutions showed high cytotoxicity for L929 cells. The cytotoxicity that was measured from the lactate dehydrogenase (LDH) release was highest for the Co-Cr-Mo alloy, followed by Ni-Ti, SUS316L, and Ti-Ta-Sn that showed the lowest value. Besides, the success rate of cell adhesion was highest for the Ti-Ta-Sn alloy after culturing for 6, 12, and 24 h. The cell proliferation tests showed that the cell proliferation speed and the relative cell proliferation rate after 3 days were both highest on Ti-Ta-Sn plates. Colony formation was highest on the Ti-Ta-Sn plates, and it was lowest on Co-Cr-Mo and SUS316L plates. These results demonstrated the suitability of the Ti-Ta-Sn alloy for use as a metallic biomaterial at the cellular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.