Abstract

A general computational scheme for the (nonrelativistic) Bethe logarithm is developed, opening the route to "routine" evaluation of the leading-order quantum electrodynamics correction (QED) relevant for spectroscopic applications for small polyatomic and polyelectronic molecular systems. The implementation relies on the Schwartz method and minimization of a Hylleraas functional. In relation with electronically excited states, a projection technique is considered, which ensures positive definiteness of the functional over the entire parameter (photon momentum) range. Using this implementation, the Bethe logarithm is converged to a relative precision better than 1:103 for selected electronic states of the two-electron H2 and H3+, and the three-electron He2+ and H+H2 molecular systems. The present work focuses on nuclear configurations near the local minimum of the potential energy surface, but the computations can be repeated also for other structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call