Abstract
The main objective of this article is to investigate the empirical performances of the Bayesian approach in analyzing structural equation models with small sample sizes. The traditional maximum likelihood (ML) is also included for comparison. In the context of a confirmatory factor analysis model and a structural equation model, simulation studies are conducted with the different magnitudes of parameters and sample sizes n = da, where d = 2, 3, 4 and 5, and a is the number of unknown parameters. The performances are evaluated in terms of the goodness-of-fit statistics, and various measures on the accuracy of the estimates. The conclusion is: for data that are normally distributed, the Bayesian approach can be used with small sample sizes, whilst ML cannot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.