Abstract
South Africa requires safe affordable distributed base load energy, one way to achieve this is to use nuclear power integrated with renewable energy sources on a decentralized basis. This suggests the development of its own micro modular nuclear reactor, to supply energy to towns, small communities, mines and processing plants. Large Light Water Reactors (LWRs) are expensive and require a large infrastructure development. A High Temperature Reactor (HTR) called the Advanced Micro Reactor (AMR) is in the process of being developed and the design philosophy is to design for inherent safety, maximally using technology that has been developed and validated in previous HTR programs albeit in a completely different and unique configuration. The concept is based on existing knowhow and experience/expertise in South Africa during the time of the Pebble Bed Modular reactor (PBMR) project. These AMR reactors are to be factory built to obtain good quality control and rolled out to various sites. Once the reactor has reached its end of life, it would be returned to a licensed organisation for refuelling. The AMR produces 10MW of thermal power. The reactor configuration uses hexagonal graphite blocks for structural and moderator material, which are arranged to form a cylindrical core layout. The fuel assemblies are silicon carbide tubes that house coated particle fuel, immersed in a lead-bismuth eutectic alloy (LBE). Each fuel assembly is contained in a boring within the graphite moderator that allows an annulus for cooling. There are 420 fuel assemblies in the core. Low enriched fuel in the form of UO<sub>2</sub> or UCO is used. Helium gas is used as coolant. The coolant enters the core at 450°C and exits at 750°C. The mechanical, neutronic and thermal-hydraulic design of the AMR, is being evaluated with assistance from STL Nuclear (Pty) Ltd., the University of Pretoria (UP), the North-West University and the South African Nuclear Energy Corporation (NECSA). The OSCAR-5 code package, together with the Serpent neutronic code were used to perform the basic neutronic studies while the Flownex package was used to determine the thermal-hydraulic and safety evaluation for the Design Base Accident (DBA) specifically the Depressurized Loss of Forced Cooling (DLOFC) event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.