Abstract

Molecular ballistics connects the molecular genetic analysis of biological traces with the wounding events and complex forensic traces investigated in terminal ballistics. Backspatter, which originates from a projectile hitting a biological target when blood and/or tissue is propelled back into the direction of the gun, is of particular interest; those traces can consolidate and persist on the outer and inner surfaces of firearms and serve as evidence in criminal investigations. Herein, we are the first to present an anatomically correct head model for molecular ballistic research based on a polyurethane skull replica enclosing tissue-simulating sponge material that is doped with "triple-contrast" mixture (EDTA-blood, acrylic paint, and an x-ray contrast agent). Ten percent ballistic gelatin was used as brain simulant. We conducted contact and intermediate-range shots with a Glock 19 pistol (9mm Luger), a pump-action shotgun (12/70 slugs), and blank cartridge handguns. Each shot was documented by a high-speed camera at 35,000fps. Apart from the blank cartridge guns, all gunshots penetrated the skull model and created backspatter, which was recovered from the distal part of the barrels and analyzed. The pistol contact shots and one of three shotgun shots yielded full STR profiles. While the shotgun slugs destroyed the skulls, the remaining models could be used for radiological and optical fracture and wound channel evaluation. Known backspatter mechanisms and their respective timing could be confirmed visually by video analysis. Our complete model setup proved to be well applicable to molecular ballistic research as well as wound channel and fracture pattern investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call