Abstract

Chemical imaging of corrosion processes involving copper species using scanning electrochemical microscopy has been hampered by the lack of soluble oxidation states for copper that can be achieved by amperometric conversion at the tip. Indeed, the only possibility is to reduce the corrosion products at the tip, thus modifying the chemical response of the electrode material and requiring subsequent redissolution of the copper deposits. Consequently, the limitations arising from the system prevented a full-scale quantification, requiring the development of new methodologies or the optimisation of those currently available, as we pursued with the present work. Therefore, the voltammetric behaviours of gold macro- and microelectrodes were evaluated with respect to the collection and redissolution of Cu2+ ions, with the aim of using them as sensing probes in scanning electrochemical microscopy (SECM) to investigate the activity of copper surfaces in acidic chloride-containing environments. Cyclic and square-wave voltammetric techniques were explored for copper collection and subsequent stripping on Au microelectrode tips in SECM with the objective to capture in situ image electrochemical reactivity distributions across copper surfaces undergoing corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.