Abstract

BackgroundLysimachia christinae Hance is a traditional Chinese medicine with diuretic, detumescent, and detoxifying effects. Our aimed to optimize the extraction protocol to maximize the yield of flavonoids from Lysimachia christinae Hance, and evaluate the pharmacological activities of four fractions, namely, petroleum ether (PE), ethyl acetate (EA), n-butanol (NB), and aqueous (AQ) fractions, of the ethanolic extract of Lysimachia christinae Hance.MethodsThe flavonoid monomers in the crude extract were characterized via high performance liquid chromatography (HPLC), were used as markers for extract quality control and standardization. The total flavonoid, total phenolic, and total polysaccharide contents of each fraction were determined by spectrophotometry. Further, the in vitro free radical (diphenylpicrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide, and hydroxyl radicals) scavenging activities, and antioxidant capacity in endothelial cells were evaluated for each fraction.ResultsAfter optimizing the extraction protocol to maximize the total flavonoid yield from L. christinae Hance, the NB fractions had the highest total flavonoid (39.4 ± 4.55 mg RE/g), total phenolic (41.1 ± 3.07 mg GAE/g) and total polysaccharide (168.1 ± 7.07 mg GE/g); In addition, the NB fraction of the ethanolic extract of L. christinae Hance reveal the strongest radical-scavenging activity, antioxidant activity and protective effects against H2O2-induced injury in HUVECs.ConclusionsAmong the four fractions of L. christinae Hance, the NB fraction showed the most potent antioxidant and endothelial protective effects, which may be attributed to its high flavonoid, phenolic contents and optimal portfolio of different active ingredients of NB fractions of the ethanolic extract of L. christinae Hance. This study might improve our understanding of the pharmacological activities of L. christinae Hance, thereby facilitating its use in disease prevention and treatment.

Highlights

  • Lysimachia christinae Hance is a traditional Chinese medicine with diuretic, detumescent, and detoxifying effects

  • Qualitative and quantitative analysis of flavonoid monomers in the crude ethanolic extract via high performance liquid chromatography (HPLC) revealed that rutin (3.36 mg/g), quercetin (0.83 mg/g), quercetin-3-methyl ether (0.17 mg/g), kaempferol (0.86 mg/g), isorhamnetin (0.35 mg/g), Isorhamnetin-robinobioside (4.11 mg/g), and chlorogenic acid (2.19 mg/g) could be used as markers for quality control and standardization

  • Our results revealed that the NB fraction significantly reversed catalase activity and GSH, Nitric Oxide (NO) level reduced and MDA level increased by Hydrogen Peroxide (H2O2), suggesting that NB fraction could prevent H2O2-induced oxidative stress injury in Human umbilical vein endothelial cells (HUVECs)

Read more

Summary

Introduction

Lysimachia christinae Hance is a traditional Chinese medicine with diuretic, detumescent, and detoxifying effects. Lysimachia christinae Hance (Jin Qian Cao), which belongs to the family Primulaceae, was recorded in the 2010 edition of the Chinese Pharmacopoeia as an herb that possesses diuretic, detumescent, and detoxifying effects. Reactive oxygen species (ROS), which include free radicals, such as superoxide anion (O2-) and hydroperoxyl radical (OH), and non-free radicals, such as hydrogen peroxide (H2O2), act as signaling molecules and are constantly produced in living cells They are efficiently eliminated by antioxidant defense systems under physiological conditions, an imbalance between ROS production and elimination leads to oxidative stress, which can damage biomolecules such as DNA, proteins, and lipids and greatly contribute to increased cardiovascular risk [5]. The present study was designed to evaluate the antioxidant potential and endothelial protective effects of L. christinae Hance, which was extracted with ethanol and separated into four fractions using solvents of different polarities

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call