Abstract
Environmental microorganisms can cause several infections in humans, especially in compromised hosts. Since there are many compromised hosts in a hospital setting, it is important to control environmental pathogens in such scenarios. To disinfect the environment, photocatalysts that produce reactive oxygen in response to light have attracted attention. In the present study, the effects of a visible-light-driven antimicrobial photocatalyst, silver (I) iodide and benzalkonium complex, on bacteria, viruses, and fungi were evaluated in vitro. In addition, uncoated panels and panels coated with the photocatalyst were set up at 11 points in a university campus for 6 months, and the adherent bacteria and fungi were measured. Bacteria, bacterial spores, viruses, and fungi were completely inactivated within 45 min on the photocatalyst-coated surface exposed to approximately 700-lux fluorescent light. In the university setting, there were fewer viable adherent bacteria and fungi on the coated plates. Our findings indicate that the silver (I) iodide and benzalkonium complex photocatalyst can decrease environmental bacteria in vitro and in actual environmental settings, and thus highlight its potential in controlling and disinfecting environmental pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.