Abstract
Activity tests for synthetic antimicrobial compounds are often limited to the minimal inhibitory concentration assay using standard media and bacterial strains. In this study, a family of acrylamide copolymers that act as synthetic mimics of antimicrobial peptides were synthesized and shown to have a disruptive effect on bacterial membranes and structural integrity through microscopy techniques and membrane polarization experiments. The polymers were tested for their antimicrobial properties using media that mimic clinically relevant conditions. Additionally, their activity was compared in two different strains of the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa. We showed that the medium composition can have an important influence on the polymer activity as there was a considerable reduction in minimal inhibitory concentrations against S. aureus grown in synthetic wound fluid (SWF), and against P. aeruginosa grown in synthetic cystic fibrosis sputum media (SCFM), compared to the concentrations in standard testing media. In contrast, we observed a complete loss of activity against P. aeruginosa in the serum-containing SWF. Finally, we made use of an emerging invertebrate in vivo model, using Galleria mellonella larvae, to assess toxicity of the polymeric antimicrobials, showing a good correlation with cell line toxicity measurements and demonstrating its potential in the evaluation of novel antimicrobial materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.