Abstract

D-Allose (D-All), a C-3 epimer of D-glucose (D-Glc), is a naturally rare monosaccharide, which shows anti-proliferative activity against several human cancer cell lines. Unlike conventional anticancer drugs, D-All targets glucose metabolism and is non-toxic to normal cells. Therefore, it has attracted attention as a unique “seed” compound for anticancer agents. However, the anti-proliferative activities of the other rare aldohexoses have not been examined yet. In this study, we evaluated the anti-proliferative activity of rare aldohexoses against human leukemia MOLT-4F and human prostate cancer DU-145 cell lines. We found that D-All and D-idose (D-Ido) at 5 mM inhibited cell proliferation of MOLT-4F cells by 46 % and 60 %, respectively. On the other hand, the rare aldohexoses at 5 mM did not show specific anti-proliferative activity against DU-145 cells. To explore the structure–activity relationship of D-Ido, we evaluated the anti-proliferative activity of D-sorbose (D-Sor), 6-deoxy-D-Ido, and L-xylose (L-Xyl) against MOLT-4F cells and found that D-Sor, 6-deoxy-D-Ido, and L-Xyl showed no inhibitory activity at 5 mM, suggesting that the aldose structure and the C-6 hydroxy group of D-Ido are important for its activity. Cellular glucose uptake assay and western blotting analysis of thioredoxin-interacting protein (TXNIP) expression suggested that the anti-proliferative activity of D-Ido is induced by inhibition of glucose uptake via TXNIP-independent pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.