Abstract

The current study demonstrated a green, friendly, low-cost biosynthesis of silver nanoparticles (AgNPs) from Kigelia africana leaves (Lam.) Benth. extract (KAE) as both a major capping and reducing agent. The produced AgNPs were characterized using a variety of analytical methods, like the X-ray powder diffraction (XRD), HRTEM, Fourier transforms infrared (FTIR), and UV–Vis spectrophotometer. The formation of AgNPs with maximum absorbance at max = 435 nm was endorsed by surface plasmon resonance. FTIR analysis revealed that biological macromolecules of KAE were involved in the stabilization and synthesis of AgNPs. At the same time, HRTEM images revealed that the average particle size of the spherical AgNPs ranged from about 25 nm to 35 nm. Further, cytotoxicity assessment of AgNPs was done using the RINm5F insulinoma cell line with an MTT assay. Followed by, the RINm5F insulinoma cells treated with AgNPs and KAE, the expression of the Peroxisome proliferator-activated receptor gamma (PPARγ) gene was accessed. The results showed gene expression was upregulated in the RINm5F insulinoma cell line thus confirming AgNPs and KAE anti-diabetic efficacy. Furthermore, the findings show that nanotechnology has enhanced the effectiveness of current methodologies in gene expression and regulation which has contributed to the emergence of different forms of advanced regulatory systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call