Abstract

The factors that determine the anatomical variations of the coronary venous system (CVS) are poorly understood. The objective of this study was to evaluate the anatomical variations of the CVS in patients with coronary artery calcification. 196 patients underwent non-contrast CT and coronary CT angiography using 256-slice CT. All subjects were divided into four groups based on their coronary artery calcium score (CACS): 50 patients with CACS = 0 Agatston unit (AU), 52 patients with CACS = 1–100 AU, 44 patients with CACS = 101–400 AU, and 50 patients with CACS > 400 AU. The presence of the following cardiac veins was evaluated: the coronary sinus (CS), great cardiac vein (GCV), posterior interventricular vein (PIV), posterior vein of the left ventricle (PVLV), left marginal vein (LMV), anterior interventricular vein (AIV), and small cardiac vein (SCV). Vessel diameters were also measured. We found that the CS, GCV, PIV, and AIV were visualized in all patients, whereas the PVLV and LMV were identified in a certain proportion of patients: 98% and 96% in the CACS = 0 AU group, 100% and 78.8% in the CACS = 1–100 AU group, 93.2% and 77.3% in the CACS = 101–400 AU group, and 98% and 78% in the CACS > 400 AU group, respectively. The LMV was less often identified in the last three groups than in the first group (p < 0.05). The frequency of having either one PVLV or LMV was higher in the last three groups than in the first group (p < 0.05). No significant differences in vessel diameters were observed between the groups. It was concluded that patients with coronary artery calcification were less likely to have the LMV, which might hamper the left ventricular lead implantation in cardiac resynchronization therapy.

Highlights

  • Over the past decade, our knowledge of the coronary venous system (CVS) has increased because of advances in interventional cardiac procedures, such as cardiac resynchronization therapy (CRT), percutaneous mitral annuloplasty, and radiofrequency catheter ablation [1,2,3,4]

  • We found that the coronary sinus (CS), great cardiac vein (GCV), posterior interventricular vein (PIV), and anterior interventricular vein (AIV) were visualized in all patients, whereas the posterior vein of the left ventricle (PVLV) and left marginal veins (LMV) were identified in a certain proportion of patients: 98% and 96% in the calcium score (CACS) = 0 Agatston unit (AU) group, 100% and 78.8% in the CACS = 1–100 AU group, 93.2% and 77.3% in the CACS = 101–400 AU group, and 98% and 78% in the CACS > 400 AU group, respectively

  • Mlynarska et al [9] used a 64-slice computed tomography (CT) scan to assessed the relationship between variation in the coronary veins and the extent of coronary artery calcium score (CACS) that can reflect the severity of coronary atherosclerosis

Read more

Summary

Introduction

Our knowledge of the coronary venous system (CVS) has increased because of advances in interventional cardiac procedures, such as cardiac resynchronization therapy (CRT), percutaneous mitral annuloplasty, and radiofrequency catheter ablation [1,2,3,4]. Mlynarska et al [9] used a 64-slice CT scan to assessed the relationship between variation in the coronary veins and the extent of coronary artery calcium score (CACS) that can reflect the severity of coronary atherosclerosis. They found the subjects with higher CACS (> 100 AU) had more visible coronary veins ( 5) than the groups with lower and no CACS. Our study aimed to assess the anatomical variations of the CVS in patients with coronary artery calcification in detail by using 256-slice CT

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call