Abstract

Background(a) To evaluate the clinical performance of endocrine analytes using the sigma metrics (σ) model. (b) To redesign quality control strategies for performance improvement.MethodsThe sigma values of the analytes were initially evaluated based on the allowable total error (TEa), bias, and coefficient of variation (CV) at QC materials level 1 and 2 in March 2018. And then, the normalized QC performance decision charts, personalized QC rules, quality goal index (QGI) analysis, and root causes analysis (RCA) were performed based on the sigma values of the analytes. Finally, the sigma values were re‐evaluated in September 2018 after a series of targeted corrective actions.ResultsBased on the initial sigma values, two analytes (FT3 and TSH) with σ > 6, only needed one QC rule (13S) with N2 and R500 for QC management. On the other hand, seven analytes (FT4, TT4, CROT, E2, PRL, TESTO, and INS) with σ < 4 at one QC material level or both needed multiple rules (13S/22S/R4S/41S/10X) with N6 and R10‐500 depending on different sigma values for QC management. Subsequently, detailed and comprehensive RCA and timely corrective actions were performed on all the analytes base on the QGI analysis. Compared with the initial sigma values, the re‐evaluated sigma metrics of all the analytes increased significantly.ConclusionsIt was demonstrated that the combination of sigma metrics, QGI analysis, and RCA provided a useful evaluation system for the analytical performance of endocrine analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.