Abstract

ABSTRACT Indoor air pollution remains a major concern, with formaldehyde (HCHO) a primary contributor due to its long emission period and associated health risks, including skin allergies, coughing, and bronchitis. This study evaluated the adsorption performance and economic efficiency of various adsorbents (biochar, activated carbon, zeolites A, X, and Y) selected for HCHO removal. The impact of thermal treatment on adsorbent regeneration was also assessed. The experimental apparatus featured an adsorption column and HCHO concentration meter with an electrochemical sensor designed for adsorption analysis. Zeolite X exhibited the highest adsorption performance, followed by zeolite A, zeolite Y, activated carbon, and biochar. All adsorbents displayed increased HCHO removal rates with an extended length/diameter (L/D) ratio of the adsorption column. Zeolite A demonstrated the highest economic efficiency, followed by zeolite X, activated carbon, zeolite Y, and biochar. Higher L/D ratios improved economic efficiency and prolonged the replacement cycle (the optimal timing for adsorbent replacement to maintain high adsorption performance). Sensitivity analysis of adsorbent regeneration under varying thermal treatment conditions (150, 120, and 80°C) and durations (60, 45, and 30 min) revealed minimal changes in adsorption efficiency (±3%). The results indicated the potential of adsorbent regeneration under energy-efficient thermal treatment conditions (80°C, 30 min). In conclusion, this study underscores the importance of a comprehensive assessment, considering factors such as adsorption performance, replacement cycle, economic efficiency, and regeneration performance for the selection of optimal adsorbents for HCHO adsorption and removal. Implications: This study underscores the importance of adsorption technology for the removal of formaldehyde and similar volatile organic compounds (VOCs), highlighting the potential of alternative adsorbents, such as environmentally friendly biochar, in addition to traditional strategies, such as activated carbon and zeolites. Our findings demonstrate the feasibility of adsorbent regeneration under energy-efficient thermal treatment conditions. These results hold promise for improving indoor air quality, reducing environmental pollutants, and enhancing responses to air contaminants like fine dust and VOCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.