Abstract
This work evaluates the accuracy and precision of the Diffusion parameter EStImation with Gibbs and NoisE Removal (DESIGNER) pipeline, developed to identify and minimize common sources of methodological variability including: thermal noise, Gibbs ringing artifacts, Rician bias, EPI and eddy current induced spatial distortions, and motion-related artifacts. Following this processing pipeline, iterative parameter estimation techniques were used to derive diffusion parameters of interest based on the diffusion tensor and kurtosis tensor. We evaluated accuracy using a software phantom based on 36 diffusion datasets from the Human Connectome project and tested the precision by analyzing data from 30 healthy volunteers scanned three times within one week. Preprocessing with both DESIGNER or a standard pipeline based on smoothing (instead of noise removal) improved parameter precision by up to a factor of 2 compared to preprocessing with motion correction alone. When evaluating accuracy, we report average decreases in bias (deviation from simulated parameters) over all included regions for fractional anisotropy, mean diffusivity, mean kurtosis, and axonal water fraction of 9.7%, 8.7%, 4.2%, and 7.6% using DESIGNER compared to the standard pipeline, demonstrating that preprocessing with DESIGNER improves accuracy compared to other processing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.