Abstract

Thallium (Tl) pollution in agricultural areas can pose hidden danger to humans, as food consumption is the key exposure pathway of Tl. Owing to the extreme toxicity of Tl, removal of Tl from soil becomes necessary to minimize the Tl-related health effects. Phytoremediation is a cost-effective method to remove heavy metals from soil, but not all plants are appropriate for this purpose. Here, the ability of Solanum nigrum L., commonly known as black nightshade, to remediate Tl-contaminated soil was evaluated. The accumulation of Tl in different organs of S. nigrum was measured under both field and greenhouse conditions. Additionally, the growth and maximal quantum efficiency of photosystem II (Fv/Fm) under different Tl concentrations (1, 5, 10, 15, and 20 mg kg(-1)) were examined after 4-month pot culture. Under both field and greenhouse conditions, Tl accumulated in S. nigrum was positively correlated with Tl concentration in the soil. Thallium mostly accumulated in the root, and bioconcentration factor was greater than 1, indicating the good capability of S. nigrum to extract Tl. Nonetheless, the growth and Fv/Fm of S. nigrum were reduced at high Tl concentration (>10 mg kg(-1)). Given the good tolerance, fast growth, high accumulation, and global distribution, we propose that S. nigrum is a competent candidate to remediate moderately Tl-contaminated soil (<10 mg kg(-1)) without causing far-reaching ecological consequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call