Abstract
The diffusion equation model is a popular tool in room acoustics modeling. The 3-D Finite Difference (3D-FD) implementation predicts the energy decay function and the sound pressure level in closed environments. This simulation is computationally expensive, as it depends on the resolution used to model the room. With such high computational requirements, a high-level programming language (e.g., Matlab) cannot deal with real life scenario simulations. Thus, it becomes mandatory to use our computational resources more efficiently. Manycore architectures, such as NVIDIA GPUs or Intel Xeon Phi offer new opportunities to enhance scientific computations, increasing the performance per watt, but shifting to a different programming model. This paper shows the roadmap to use massively parallel architectures in a 3D-FD simulation. We evaluate the latest generation of NVIDIA and Intel architectures. Our experimental results reveal that NVIDIA architectures outperform by a wide margin the Intel Xeon Phi co-processor while dissipating approximately 50W less (25%) for large-scale input problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.