Abstract

Prostate cancer is the most common men urogenital tumor. For most patients with the disseminated neoplastic process in the prostate after the hormonal therapy, the disease gradually progresses in the form of castration-resistant prostate cancer (mCRPC). The use of 223Ra agents is aimed at the treatment of the bone lesions as part of palliative therapy. The physical properties of 223Ra significantly complicate the require direct radiometry for patients with alpha emitters. Hence, the distribution of 223Ra in the body should be evaluated based on the dedicated biodistribution models. The aim of this study was to review and analyze the existing approaches to the evaluation of the biodistribution of 223Ra and its pharmaceutical forms (223Ra-dichloride) for the further assessment of absorbed doses in radiosensitive organs and tissues. The study includes the mathematical models for the estimation of the absorbed doses in various organs and tissues of the body. A review of three different 223Ra biodistribution models is presented: two ICRP models for occupational exposure and a model based on the results of an experimental assessment of 223Ra distribution in patients with mCRPC. It was indicated that the latter model is in good agreement with the results of direct radiometry of patients. A significant drawback of all models is the simulation of the red bone marrow and bone surface as single chambers. During the radionuclide therapy, 223Ra will specifically accumulate in bone metastases, instead of being evenly distributed in the skeleton. Hence, the use of any of the reviewed models will lead both to a significant overestimation of the absorbed dose in a healthy part of the bone surface and red bone marrow, and to an underestimation of the absorbed dose in bone metastases. Currently, this problem has not been solved. That requires the development of new improved models that consider the accumulation of 223Ra in the healthy part of the skeleton and in skeletal metastases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.