Abstract
The partition coefficients (logP) of nucleoside analogs determined by the difference in the free energies of hydration and solvation in water-saturated octanol using the thermodynamic integration method are reported. The logP values calculated in this approach are closer to the experimental values compared to other ab initio methods. Solvation free energy in water and octanol, free energy of cavity formation in water and Henry’s constants, and some other parameters are estimated at the density functional theory (DFT) and Hartree-Fock level with 6–31G*, 6–31G, and 6–31+G basis sets. Surface area, mass, refractivity, volume, polarizability, and dipole moment are calculated for some drugs with HF and DFT methods. The results show that log P decreases with the decrease in polarizability and the increase in dipole moment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.