Abstract
The Al-Quran translation index issued by the Ministry of Religion can be used in text mining to search for similar patterns of Al-Quran translation. This study performs sentence grouping using the K-Means Clustering algorithm and three weighting scheme models of the TF-IDF algorithm to get the best performance of the Tf-IDF algorithm. From the three models of the TF-IDF algorithm weighting scheme, the highest percentage results were obtained in the traditional TF-IDF weighting scheme, namely 62.16% with an average percentage of 36.12% and a standard deviation of 12.77%. The smallest results are shown in the TF-IDF 1 normalization weighting scheme, namely 48.65% with an average percentage of 25.65% and a standard deviation of 10.16%. The smallest standard deviation results in a normalized 2 TF-IDF weighting of 8.27% with an average percentage of 28.15% and the largest percentage weighting of 48.65% which is the same as the normalized TF-IDF 1 weighting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Information Technology and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.