Abstract

The effect of tempering on the magnetic Barkhausen noise (MBN) signal profile was studied in case-carburised EN36 steel using a range of magnetic excitation frequencies and a number of frequency ranges for analysis of the MBN signal. The MBN level generally increases with tempering due to coarsening of the microstructure. With higher values of excitation frequency, f EX, the MBN profile exhibits a single peak, but with low values of f EX, double peaks are observed. The MBN peak obtained with higher f EX was found to correlate well with hardness changes in a region, down to 100 μm below the surface. The analysis of the MBN signal produced with low f EX, in narrow frequency ranges selected by software frequency filtering, showed variations in the extent of changes in the relative height of the two MBN peaks in the profile. After taking into account the skin depth-frequency relation for the MBN signal, variations in the values of the two MBN peaks in different analysing frequency ranges were found to correlate well with hardness variations at different depths down to 425 μm below the surface. An empirical relationship has been established between the hardness-depth profile and the MBN measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.