Abstract

In this paper, we investigate the accuracy and precision of the results from diode array detector (DAD) data and mass spectrometry (MS) data as obtained subsequent to chromatographic separations using computer simulations. Special attention was given to simulations of multiple injections from a developing enzymatic reaction. These simulations result in three-way LC–DAD–MS kinetic data; LC–DAD and LC–MS data were also evaluated independently in this investigation. The noise characteristics of the MS detector prevent accurate determination of the individual reaction rate constants by the analysis method. Using the data from the DAD in combination with the MS detector results in improved estimation of the rate constants. The results also indicate that the higher resolving power of the MS information compensates for the lower signal-to-noise ratio in these data, compared to DAD data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call