Abstract

Molybdenum coated gearbox synchronizers are tested in a μ-comp test rig under varying loading conditions until failure. Four different parameters used to describe the thermomechanical load are evaluated just before failure to compare their ability to predict failure. The parameters evaluated are the synchronized kinetic energy, the synchronization power, and the focal as well as the average surface temperature increase. The focal surface temperature increase as well as the average surface temperature increase is found to predict failure with relatively good accuracy. It is shown that there exists a threshold which divides the synchronizer into either a very long or a very short service life. Additionally, a method to determine the average surface temperature in the gearbox management system is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.