Abstract
Parasitic ringing is commonly observed during the high-speed switching of wide band-gap (WBG) devices. Additional loss contributed by parasitic ringing becomes a concern especially for high switching frequency applications. This paper investigates the effects of parasitic ringing on the switching loss of WBG devices in a phase-leg configuration. An analytical switching loss model considering parasitics in power devices and application circuit is derived. Two switching commutation modes, gate drive dominated mode and power loop dominated mode, are investigated, respectively, and the switching loss induced by damping ringing is identified. It is found that this portion of the loss is at most the energy stored in parasitics, which always exists regardless of the switching speed and parasitic ringing. Therefore, with the given WBG device in the specific application circuit, damping more severe parasitic ringing during faster switching transient would not introduce higher switching loss. Additionally, the extra switching loss induced by resonance among parasitics and crosstalk is investigated. It is observed that severe resonance and its resultant over-voltage during the turn- on transient worsen the crosstalk, causing large shoot-through current and excessive switching loss. The theoretical analysis has been verified by the double pulse test with a 1200-V/50-A SiC-based phase-leg power module.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.