Abstract

Mechanical under-row weed control in the vineyard emerges as a sustainable choice compared to chemical control, with tillage-based approaches proving especially efficient. A rollhacke, finger weeder, and blade weeder are valid alternatives to commonly used implements that cause excessive soil disruption and display suboptimal efficiency. The trial aimed to compare different under-row weed control strategies in terms of weed control efficacy and operational performance. Among these, in ST1, a tool-holder equipped with both a rollhacke and finger weeder was used at the first and second intervention; in ST2, a rollhacke was used at the first intervention and blade weeder at the second one; in ST3, firstly the tool-holder equipped with a rollhacke and finger weeder was used, then the blade weeder; in ST4, a rollhacke was used first and then the tool-holder equipped with a rollhacke and finger weeder. Weed height, weed cover, and weed biomass were evaluated before the first and after the second intervention. Total field time, fuel consumption, and CO2 emissions of each strategy were assessed. ST1 proved to be the best compromise in terms of weed control effectiveness and operational performance compared to the other strategies. Indeed, ST1 tendentially achieved a lower weed height (20.42 cm) and weed biomass around vine trunks (105.33 g d.m. m−2) compared to the other strategies. In terms of total field time, fuel consumption and CO2 emissions, ST1 recorded intermediate values equal to 3.85 h ha−1, 15.29 kg ha−1, and 48.72 kg ha−1, respectively. Further studies are needed to evaluate these strategies in different vineyard conditions, considering their effect on weed flora composition. Furthermore, exploring automation technology for real-time implement adjustments based on weed infestation levels could further improve the intervention effectiveness and efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.