Abstract

The sustainable design of major civil engineering projects, such as landslide management and slope stability, provides new opportunities for our society regarding the global energy crisis. These sources offer an effective solution to environmental issues and human energy needs. Slope stability, as a critical aspect of ensuring public safety and protection of infrastructure, often leads to disastrous consequences, highlighting the significance of designing effective and sustainable measures to mitigate the risks associated with landslides. Although anti-slide piles have become a widely used method to enhance slope stability, this paper investigates how the Analytic Hierarchy Process (AHP) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methodologies can be combined to achieve a sustainable design for anti-slide piles, simultaneously considering environmental, economic, safety, and technical factors. Through the integration of AHP-VIKOR and a case study, this paper demonstrates an effective approach to prioritizing sustainability in the design process of anti-slide pile systems, evaluating five main criteria—slope stability, sustainability, anti-slide pile capacity, cost, and ease of construction—and five sub-criteria. The proposed methodology is validated through a case study, wherein various design alternatives for anti-slide piles are evaluated based on sustainable requirements. The results indicate that the slope stability criterion has the highest weight of 0.404, followed by anti-slide pile capacity (0.283), sustainability (0.129), and cost (0.146) criteria. The ease of construction has the lowest weight of 0.038. As a result of the evaluations, it has been seen that, if the sustainability criteria are included in the analyses, the anti-slide pile alternatives are determined in the range of ξ = 0.1–0.3 and s/D = 2.0–3.0, compared to the scenarios where only the economic and technical criteria are satisfied. A pile geometry of diameter, D = 1.00 m, is the most sustainable value within the selected pile spacing intervals, meeting the criteria of slope safety, pile capacity, cost, and ease of construction. This hybrid approach allows for a more balanced consideration of a multi-criteria decision, while considering the sustainability aspects of anti-slide pile selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call