Abstract

A p-n junction diode with mesa structure by silicon carbide (SiC) has been developed to utilize the avalanche breakdown in an excessed reverse bias condition to clamp the surge voltage in switch-mode power supplies. Static voltage-current correlation by pulsed reverse voltage has been measured. The increase of the breakdown voltage was measured to be 32 volts with increased current density up to 3900 A/cm2. The operational performance in suppressing the surge voltage in a step-down DC/DC converter has been evaluated. A superior performance in suppressing the surge voltage by the SiC p-n junction diode has been confirmed. It was also found that a resonant oscillation induced during clamping period limits the performance. By a circuit analysis with an equivalent circuit model, it was found that a parasitic wiring inductance between the diode and switching element induces the resonance. It was also found that a promising way to mitigate the disturbing effect is to minimize the inductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.