Abstract

Folic acid is used for preventing and treating multiple diseases and disorders, administered in the form of oral supplements. The present research work was aimed to study the influence of two non-ionic surfactants Poloxamer and Tween 80 (Polysorbate 80) on pectin submicrospheres formulations. Typical natural polymer pectin was used to encapsulate folic acid by cross linking method. The resultant submicrospheres contributed to improve the aqueous solubility to enhance the bioavailability of folic acid. During investigation, it was observed that pectin polymers influenced kinetics of the rate of reaction more intensively than the surfactants. The physical phenomenon caused the change in their size, shape and chemistry of pectin polymers transforming into submicrospheres in aqueous condition. The characteristic differences of submicrospheres were assessed by scanning electron microscopy, differential scanning calorimetry and Fourier-transform infrared spectroscopy. The average diameters of the submicrospheres ranged between 250 and 500nm. The encapsulation efficiency of submicrospheres ranged between 80 and 96%. The characteristic swelling behavior of lyophilized submicrospheres was influenced by the ratio of pectin polymers and folic acid used in the formulations. The submicrospheres systems exhibited controlled release of folic acid due to the pH-dependent solubility of pectin polymers in aqueous medium. The submicrospheres showed good haemocompatibility suggesting them to be promising candidates for oral delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call