Abstract

Titanium possesses a unique ability to bind with bone and living tissue, making it an ideal material for orthopedic implants such as knee and hip replacements. Because of the strength to weight ratio, hermeticity, biocompatibility and light weight makes titanium and its alloy the best choice for implant. The main goal focused on studying the influence of surface coating of some titanium base alloys by Nano (ZrO2&Y2O3) to the surface roughness of implant alloys. Preparation of samples was accomplished by using powder technology technique, in which the raw materials was pure titanium, 10%cobalt,50% nickel, and 30% tantalum powders. The samples were cleaned by ultrasonic device the surface pre- treated by chemical etching, then deposition of nano (ZrO2 with Y2O3) accomplished by pack cementation process. After samples characterization by (X-ray diffraction, hardness test, porosity percentage and Surface roughness). The result showed that diffraction patterns gained for the samples were the phases developed as a result of sintering and after deposition, There are likely no presents of pure metals that prove the time and temperature of sintering utilized in this work results in full sintering reactions, the XRD patterns of samples after (ZrO2,Y2O3) deposition by pack cementation process. It is obvious that Amorphous behavior was observed in the XRD after deposition nearly at 2θ (15.799) for all samples. It is evident that the porosity percent of the samples after (ZrO2, Y2O3) deposition was largely decreases due to the pack cementation process. There was considerable increasing in hardness value, finally the roughness values obtained from the AFM it was found that there are large changes in the roughness value of samples after coating due to full the surface by Nano ceramic material deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call