Abstract

This study evaluated the surface roughness patterns of two resin-based composite restorative materials, a microhybrid (Filtek Z250, 3M ESPE) and a nanofilled (Filtek Supreme, 3M ESPE), subjected to a regimen that simulated dynamic pH-cycling and toothbrushing. Twelve standardized cylindrical specimens of each resin-based composite material were prepared, finished, and mechanically polished. The experimental units were submitted to a pH-cycling regimen followed by 50,000 toothbrushing cycles, after which the surface roughness was measured using an atomic force microscope (AFM). AFM surface roughness was evaluated at three intervals: (1) immediately after specimen preparation (baseline), (2) after pH-cycling, and (3) after simulated toothbrushing. The results were then analyzed using a split-plot design and followed by linear regression and a Tukey's test at a significance level of p<0.05. The results obtained indicated that simulated toothbrushing provoked a remarkable increase in surface roughness for both types of composite resins tested (p=0.0031). However, pH-cycling did not alter the surface of the composite under the conditions of this experiment. Based on the results obtained, it was concluded that simulated toothbrushing was capable of increasing the surface roughness of the microhybrid (Filtek Z250) and the nanofilled (Filtek Supreme) composites tested. Surface roughness of nanofilled and microhybrid composites is significantly increased after toothbrushing, although pH-cycling, as tested in this study, does not appear to affect the morphology of either composite material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call