Abstract

Modification of the biomaterial surface topography is a promising strategy to prevent bacterial adhesion and biofilm formation. In this study, we use direct laser interference patterning (DLIP) to modify polystyrene surface topography at sub-micrometer scale. The results revealed that three-dimensional micrometer structures have a profound impact on bacterial adhesion. Thus, line- and pillar-like patterns enhanced S. aureus adhesion, whereas complex lamella microtopography reduced S. aureus adhesion in static and continuous flow culture conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus adhesion both when the surface is coated with human serum proteins and when the material is implanted subcutaneously in a foreign-body associated infection model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.