Abstract
A novel contour integral approach termed Medg is introduced for computation of the surface energy required for the formation of multiple edge cracks. The method is developed by reinterpretation of the conventional M-integral with deliberate delimitation of integration contour and selection of coordinate origin. Due to path independence, this method is efficient, easy to implement by using finite elements, and does not require a complicated mesh around the crack tips for good accuracy. Attention is also addressed to discussion of the size effects on proper interpretation of its physical meaning. The adequacy of the numerical results computed for the finite size corrections has been validated by using some of the available empirical formulations. It is observed that the size effect can be neglected when the crack size remains under one-tenth of the structure size. The results of a specific multi-cracked geotechnical structure suggest that, the damage state such as degradation of the structural stiffness due to the presence of edge cracks can be properly inspected by using Medg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.