Abstract

This paper introduces a novel method for assessing surface corrosion damage in thin plates by leveraging the high sensitivity of Zero-Group Velocity (ZGV) Lamb waves and the versatility of polyvinylidene fluoride (PVDF) comb transducers. Theoretical analyses of ZGV Lamb wave modes and their differentiation from thickness vibration modes were conducted. The functionality and utility of the PVDF comb transducer tailored for the specific S1-ZGV mode were assessed. Experimental findings demonstrate that the PVDF comb transducer efficiently excites and captures the S1-ZGV mode, enabling effective assessment of surface corrosion damage in thin aluminum plates. Compared to the variations in wave velocity of surface acoustic waves (SAW) and the S1-ZGV frequency, the spectral amplitude at the initial S1-ZGV frequency exhibits a monotonically decreasing trend with increasing corrosion levels, proving to be more sensitive and reliable for evaluating surface corrosion damage. This research offers theoretical underpinnings and experimental validation for damage assessment using ZGV Lamb waves with the PVDF comb transducer, showcasing significant potential for practical engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.