Abstract
In this paper, we compare methods for evaluating the fetal state prediction based on Cardiotocography (CTG) data. Antepartum Fetal Monitoring provides information that can be used to predict the state of the fetus during labor to indicate the risk of a fetal acidosis (low blood pH from low oxygen levels). The effectiveness of these predictions is evaluated in a real-time clinical decision support system and extracts other features that can provide further information regarding the fetal state. This research differs from previous work in that all three fetal states (normal, suspect and pathological) are considered. The paper discusses the importance of machine learning in providing assistance for the obstetricians in ‘suspect’ cases. Results show that both Support Vector Machines and Random Forests had over 96% accuracy when predicting fetal outcomes, with SVM performing slightly better for suspect cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.