Abstract

Superfluid helium cooling offers the possibility to improve the performances of superconducting devices and infrared detectors with lower operating temperatures and provides extremely high heat transfer performances. In this paper, various cooling architectures are studied and the amplitude and the space distribution of the heat loads are taken into account. Complete and simplified analytical models are proposed using either the He II heat transport or convection. These cooling options could be evaluated to pre-design the future generation of superconducting devices required in laboratory test beds and the large scale research infrastructures such as particle accelerators and thermonuclear fusion reactors. As an example, the different schemes proposed are calculated for the recombination dipole D2 of the High Luminosity Large Hadron Collider Project at CERN (HL-LHC). Finally a comparison analysis is provided for this specific case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.