Abstract

Biogas is a renewable energy source that can be used to produce heat and energy, replacing fossil fuels. The main factor limiting the use of biogas is contaminants in its composition which H2S is the most important due to corrosion and environmental problems. A promising technology to remove this contaminant from biogas is the biotrickling filters and the selection of inexpensive and durable supports is an important step for the operation. This work has studied different support materials, for microorganisms immobilization, as Polyvinyl Chloride (PVC), Polyethylene Terephtalate (PET), Polytetrafluoroethylene (Teflon®) comparing to open pore polyurethane foam (OPP) each one packed in biotrickling filters to evaluate the consumption of thiosulfate by chemolitotrofic microorganisms. The kinetics of substrate consumption in different cycles for each support were distinct suggesting different microbial colonization. The materials tested have presented results very similar polyurethane foam, which has already known by its efficiency on biogas desulfurization, unless Teflon that has showed a divergent result with the increase of the substrate concentration in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.