Abstract

AbstractWe characterize the radiation‐induced damage of InGaP/GaAs/Ge solar cells for various proton irradiation energies and fluences using conventional current‐voltage (I‐V) measurements, external quantum efficiency, and a noncontact time‐resolved photoluminescence (PL) technique. From the I‐V curves, we obtain the conversion efficiency of the entire device. The external quantum efficiency showed that the short‐circuit current is only determined by the top InGaP subcell. To obtain accurate information about the point of maximum power, a new PL technique is introduced. The PL time decays of the InGaP and GaAs subcells are measured to obtain the characteristic decay time constants of carrier separation and recombination. We empirically verify that the time‐resolved PL method can be used to predict the electrical conversion efficiency of the subcells. We find that the limiting subcell at the point of maximum power is different from that for short‐circuit current. Radiation damage in unexpected regions of the device is revealed using this optical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.