Abstract

The present study aims to introduce three known and three new stable polycyclic aromatic compounds synthesized. With MALDI-Mass, 1H and 13C NMR spectroscopy, all new compounds were characterized. In the DMF solution were carried out the electrochemical and photophysical properties of the polyaromatic compounds. The compoundsare highly fluorescent showing green-red emission when excited at one single wavelength. For the compound 3, it was shown that the highestStokes Shift (191 nm) appeared which may be due to the excited state energy transfer. The compounds also indicated the blue-orange region of the electromagnetic spectrum strong emission bands. Additionally, compounds 1, 3, 4, and 5 were investigated for their in vitro cytotoxic activities against PC-3 prostate cancer cells, L-929 non-cancerous cells, and MDA-MB-231 breast cancer for 24 h, 48 h and 72 h. The results obtained from the experiment demonstrated that compounds had different cytotoxic activity against cell lines. Compound 3 was indicated to be inactive against L-929 cells and MDA-MB-231 cancer cells, whereas compounds 1, 4 and 5 indicated a dose and time-dependent cytotoxic activity against PC-3, MDA-MB-231, and L-929 cell lines. It was found that the most sensitive cells to compound 5 were MDA-MB-231 human breast cancer cells. Additionally, it became clear that compounds 1 and 3 had significant selectivity for human PC-3 prostate cancer cells, and compounds 1, 4 and 5 had considerable selectivity for human MDA-MB-231 breast cancer cells. Also, the quantum chemical examinations of six organic compounds were conducted at the B3LYP/6-31G level in the gas phase and water. According to calculatedresults, compound 5 was found to be the best candidate for NLO applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.