Abstract

Adult Plant Resistance (APR) based on partial resistance is an important and effective way to combat yellow rust (Puccinia striiformis) in wheat production. The objective of current research was planned to evaluate the response of 436 wheat (Triticum aestivum) genotypes against yellow rust resistance under field conditions during 2020 main cropping season. Over locations, Partial resistance screening was evaluated through Final Rust Severity (FRS), Area under Disease Progress Curve (AUDPC), Coefficient of Infection (CI), Relative Area under Disease Progress Curve (rAUDPC) and field reaction have used for differentiating Adult plant resistances. Responses of four hundred thirty six genotypes, one hundred fourteen wheat lines were high adult plant resistance, fifty eight lines were found to be intermediate adult plant resistant and two hundred sixty four were low adult plant resistance over location. With rAUDPC values over location twenty seven were 1-10 shown resistant, eighty seven lines were 11-30 categorized as moderately susceptible and three hundred twenty two genotypes exhibited susceptible response against yellow rust with more than 31-100 rAUDPC value. High values above 31 prcent of rAUDPC showed greater severity of yellow rust on wheat genotypes while lower rAUDPC values indicated resistance to yellow rust. Fifty bread wheat genotypes that were selected based on overall agronomic performance (biomass, spike length, number of spikes/m2, tillering capacity, stalk strength or lodging resistance, shattering resistance and diseases resistance especially yellow rust and Septoria blotch. Three genotypes were EBW192345, EBW192346 and EBW192347 extraordinarily out performed evaluated materials phenotypically in terms of agronomic performance and diseases resistance over locations. The present study revealed that the lines were having enough diversity regarding slow rusting behavior and yellow rust resistance, ranging from immunity to partial resistant lines. Present research provided the resistant wheat lines to the breeders to incorporate in their breeding program against yellow rust.

Highlights

  • Stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most devastating rust disease that attacks much of global wheat production

  • Diverse field reactions ranging from resistance (R) to susceptible (S) responses were observed at the Kulumsa, Bekoji and Meraro experimental sites

  • Based on final rust severity, the tested wheat genotypes were grouped into three groups of slow rusting resistance, that is, high, intermediate and low levels of adult plant resistance(APR) having 1-30 and 31- 50 and 51-100% Final Rust Severity (FRS), respectively

Read more

Summary

Introduction

Stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most devastating rust disease that attacks much of global wheat production. Tritici, Pst) is the most devastating rust disease that attacks much of global wheat production. The rapid emergence of virulent Pst races has overcome most of the known stripe rust resistance genes in wheat. Stripe rust of wheat is serious problem for wheat production worldwide and has reportedly caused significant yield losses in more than 60 countries. Epidemics of the disease can rapidly destroy leaf tissue and significantly reduce grain yield and quality. In most wheat-producing areas, yield losses caused by stripe rust range from 2.7 to 96.7% depending on the degree of susceptibility of the cultivar, timing of the initial infection, rate of disease development, areas of hotspot and duration of disease [2]. 80 yellow rust resistance (Yr) genes have been permanently named in wheat, including

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.