Abstract

The primary function of corono-radicular post is to provide retention for the core and to reinforce and to replace the remaining coronal tooth structure. There is considerable controversy regarding optimal choice of the material. An ideal post system should exhibit fracture resistance higher than the average masticatory forces. Finite elemental analysis (FEA) method facilitates precise analysis of the distribution and magnitude of stresses at any point of complex and irregular structures. Thus, this FEA study has been undertaken to evaluate the fracture stress distribution patterns in three fiber posts, viz., carbon, glass fiber, and everStick with an FEA. The FE stress analysis was performed with the FE software program (CATIA). Three two-dimensional FEA models of central incisor were simulated, and elastic moduli and Poisson's ratio of all the materials were fed to the software. For all the models, a 200 N vertical force was applied on the lingual surface of the tooth at an angle of 45°. Stress concentration and distribution were evaluated and noted down for all the models. To evaluate the stresses within the restored tooth, the modified von Mises failure criterion was used. The equivalent stresses found in the tested models were compared with the tensile strength of the respective materials. Contact stresses in the luting cement-dentin interface were calculated. Finite element method revealed that maximum stress concentration was at the point of stress application. The stress value was highest in carbon fiber post followed by glass fiber post and least stresses found in everStick post. Maximum stress was observed at the labial surfaces of crown. However, the stress values and distribution were more homogenous in everStick post. The present findings suggest that everStick post has uniform stress distribution within tooth structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.