Abstract
ObjectivesThe biomechanical response of teeth with periapical lesions that have been restored using various substructure materials, as well as the stress mapping in the alveolar bone, has not been thoroughly described. In this context, the objective of this study is to investigate the structural stress distributions on root canal-treated maxillary right central incisors with lesions restored using different crown materials under linear static loading conditions through finite element analysis (FEA). MethodsIn the study, five FEA models were utilised to represent healthy teeth and teeth restored with different substructure materials: (A) a healthy tooth, (B) a lesioned, root canal-treated, composite-filled tooth, (C) a lesioned, fiber-posted, zirconia-based crown, (D) a tooth with lesions, a fiber post, and Ni–Cr infrastructure crown, (E) a tooth with a lesion, a fiber post, and an IPS E-max infrastructure crown. A force of 100 N was applied at an angle of 45° to the long axis of the tooth from 2 mm cervical to the incisal line on the palatal surface. Deformation behaviour and maximum equivalent stress distributions on the tooth sub-components, including the bony structure for each model, were simulated. ResultsDifferences were observed in the stress distributions of the models. The maximum stress values of the models representing the restorations with different infrastructures varied, and the highest value was obtained in the model of the E-max crown (Model E: 136.050 MPa). The minimum stress magnitudes were obtained from Model B the composite-filled tooth (80.39 MPa); however, it was observed that the equivalent stresses in all the models showed a similar distribution for all components with varying magnitudes. In periapical lesion areas, low stresses were observed. In all models, the cervicobuccal collar region of the teeth had dense equivalent stresses. ConclusionDifferent restorative treatment methods applied to root canal-treated teeth with periapical lesions can impact the stress in the alveolar bone and the biomechanical response of the tooth. Relatively high stress values in the cortical bone at the cervical line of the tooth have been observed to decrease towards the apical region. This observation may suggest a potential healing effect by reducing pressure in the periapical lesion area. Clinical significanceComposite resin restorations can be considered the first-choice treatment option for the restoration of root canal-treated teeth with lesions. In crown restorations, it would be advantageous to prefer zirconia or metal-supported prostheses in terms of biomechanics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.